터보 제트 엔진은 터빈 엔진의 일종이다. 기류에 전적으로 의존하여 추력을 발생시키는 것이 특징이다. 일반적으로 고속 항공기의 동력으로 쓰인다. 연료 소비가 터보 팬 엔진보다 높다. 터빈 제트 엔진에는 원심식과 축류의 두 가지 유형이 있습니다. 원심식은 1930 년 영국인 프랭크 휘틀 경에게 특허를 신청했지만 194 1 까지 이런 엔진이 장착된 비행기가 처음으로 하늘로 올라갔다. 제 2 차 세계대전에 참가하지 않았고, 축식은 독일에서 태어났고, 최초의 실용제트 전투기 Me-262 로 1945 에 참가했다. 원심식 소용돌이 엔진에 비해 축류는 단면이 작고 압축비가 높다는 장점이 있다. 현재의 터보 제트 엔진은 모두 축류이다.
흡기 축류 터보 제트 엔진의 주요 구조는 그림과 같습니다. 공기가 먼저 입구로 들어간다. 비행기의 비행 상태가 변하기 때문에 입구는 공기가 결국 다음 구조인 압축기로 순조롭게 들어갈 수 있도록 보장해야 한다. 공기 흡입구의 주요 역할은 공기를 엔진이 정상적으로 작동할 수 있는 상태로 조절한 후 압축기에 들어가는 것이다. 초음속 비행에서는 기수와 입구가 모두 급파를 일으키고, 급파를 통과하면 기압이 증가하기 때문에, 진입로는 어느 정도 사전 압축 작용을 할 수 있지만, 급파 위치가 부적절하면 국부 압력이 고르지 않게 될 수 있으며, 심지어 압축기를 손상시킬 수도 있다. (데이비드 아셀, Northern Exposure (미국 TV 드라마), 스포츠명언) 그래서 초음속 비행기의 공기 흡입구에는 급파 조절 원추가 있어 공속도에 따라 급파의 위치를 조절한다. 양쪽에서 흡입기나 기복흡기가 있는 비행기는 흡입구가 기체에 접근하면 기체 경계층 (또는 경계층) 의 영향을 받아 경계층 조절 장치가 설치된다. 경계층이란 기체 표면에 바짝 달라붙어 흐르는 공기 층을 말한다. 속도는 주변 공기보다 훨씬 낮지만 정압은 주변 공기보다 높아 압력 그라데이션을 형성합니다. 에너지가 낮아 엔진에 들어가기에 적합하지 않아 도태가 필요하다. 항공기에 특정 공격 각 (AOA) 이 있을 때 압력 그라데이션의 변화로 인해 압력 그라데이션이 증가하는 부분 (예: 바람막이와 같은 부분) 에서 경계층 분리가 발생합니다. 즉, 원래 기체에 밀착되었던 경계층이 어느 지점에서 갑자기 분리되어 난기류를 형성합니다. 터뷸런스는 층류를 기준으로 하며, 층류는 간단하게 불규칙하게 움직이는 유체이다. 엄밀히 말하면, 모든 흐름은 난류이다. 난류의 메커니즘과 과정의 시뮬레이션은 아직 명확하지 않다. 그렇다고 난류가 나쁘다는 뜻은 아니다. 엔진의 여러 곳에서, 예를 들면 연소 과정에서 난류를 충분히 이용해야 한다. 압축기 압축기는 고정자 블레이드와 로터 블레이드로 구성됩니다. 한 쌍의 고정자 블레이드와 회 전자 블레이드를 첫 번째 단계라고합니다. 정자는 엔진 랙에 고정되어 있고 회전자는 회전자 축을 통해 터빈과 연결되어 있다. 현역 터보 제트 엔진은 보통 8- 12 압축기입니다. 단계가 많을수록 스트레스가 커진다. 전투기가 갑자기 높은 G 기동을 하면 압축기 앞 급으로 유입되는 공기압력이 급격히 떨어지고 후급의 압력이 높아질 것이다. 이때 후급의 고압 공기가 거꾸로 팽창하고 엔진이 매우 불안정하여 공사에서' 서지' 라고 부른다. 이것은 엔진에서 가장 치명적인 사고로, 가동 중지 시간과 심지어 구조적 손상을 초래할 가능성이 높다. "서지" 를 방지하는 몇 가지 방법이 있습니다. 경험에 따르면 서지는 압축기의 5 급과 6 급 사이에 많이 발생하며, 두 번째 구간에 방기 링을 설치하고, 압력이 이상할 때 제때에 압력을 방출하여 서지를 피한다. 또는 회전자 축을 두 개의 동심 빈 원통으로 만들어 각각 전면 저압 압축기와 터빈, 후면 고압 압축기와 다른 터빈을 연결합니다. 두 회전자 그룹은 서로 독립적이며, 압력이 이상할 때 회전 속도를 자동으로 조절하거나 서지를 피할 수 있다. 연소실과 터빈 공기는 압축기를 통해 압축한 후 연소실로 들어가 등유와 섞어서 연소하여 팽창하여 일을 한다. 그런 다음 터빈을 통해 터빈을 고속으로 회전합니다. 터빈과 압축기 로터가 같은 축에 연결되어 있기 때문에 압축기와 터빈의 회전 속도는 같다. 마지막으로 고온의 고속 가스가 노즐을 통해 분출되어 반응을 통해 동력을 공급한다. 처음에는 연소실이 몇 개의 작은 원통형 연소실이었는데, 회전자 축을 중심으로 원형으로 나란히 놓여 있었다. 각 실린더는 밀봉되지 않고 적절한 곳에 구멍을 열어 연소실 전체가 연결되도록 했다. 나중에 컴팩트한 환형 연소실로 발전했지만 전체 유체 환경은 원통형 연소실만큼 좋지 않아 두 가지 장점을 결합한 조합식 연소실이 나타났다. 터빈은 항상 극단적인 조건 하에서 일하며, 그 재료와 제조 기술에 대해 매우 엄격한 요구를 가지고 있다. 현재 분말 야금 중공 블레이드는 대부분 전체 주조, 즉 모든 블레이드와 원반의 일회성 주조이다. 각 블레이드와 디스크는 초기에 비해 개별적으로 주조한 다음 장부 모양으로 연결하여 연결 품질을 많이 절약할 수 있습니다. 제조 재료는 대부분 고온에 견디는 합금 소재로, 속이 빈 블레이드는 찬바람으로 냉각할 수 있다. 제 4 세대 전투기를 위해 개발된 신형 엔진에는 고온 성능이 더욱 뛰어난 세라믹 분말 야금 블레이드가 장착된다. 이러한 조치는 터빈 제트 엔진의 가장 중요한 매개변수 중 하나인 터빈 전 온도를 개선하기 위한 것이다. 높은 사전 소용돌이 온도는 고효율과 고전력을 의미한다. 노즐과 가력 연소실 노즐 (또는 노즐) 의 모양과 구조에 따라 공기 흐름이 결국 제거되는 상태가 결정됩니다. 초기의 저속 엔진은 간단한 수렴 노즐을 사용하여 속도를 높이는 목적을 달성했다. 뉴턴의 제 3 법칙에 따르면, 가스 방출 속도가 클수록 항공기가 얻는 반작용력이 커진다. 그러나 이 방식의 성장 속도는 한계가 있다. 최종 기류 속도가 음속에 이르고 급파가 나타나 기체 속도의 증가를 막기 때문이다. 배율 조정 노즐 (라발 노즐이라고도 함) 을 사용하여 초음속 제트를 얻을 수 있습니다. 비행기의 기동성은 주로 날개면이 제공하는 공기동력에서 비롯되며 기동성이 높을 때 제트의 추진력을 직접 이용할 수 있다. 역사적으로 두 가지 방안이 있습니다. 즉, 노즐에 가스 제어면을 설치하거나 실제 적용 단계에 들어간 편향 노즐 (추력 벡터 노즐 또는 벡터 추력 노즐이라고도 함) 을 직접 사용하는 것입니다. 러시아의 유명한 수 -30 과 수 -37 전투기의 뛰어난 기동 성능은 루리카 설계국의 AL-3 1 추력 벡터 엔진 덕분이다. 기타 대표는 미국의 X-3 1 기술 검증기입니다. 고온기체가 터빈을 통과한 후에도 제때에 소모되지 않은 산소가 함유되어 있다. 만약 이 가스에 등유를 계속 주입한다면, 그것은 여전히 연소되어 추가적인 추진력을 생산할 수 있다. 따라서 일부 고성능 전투기의 엔진은 터빈 뒤에 가력 연소실 (또는 가력 연소실) 을 추가하여 단시간 내에 엔진 추력을 대폭 높이는 목적을 달성했다. 일반적으로 가력은 단시간에 최대 추력을 50% 증가시킬 수 있지만, 연료 소비량은 놀라울 정도로 이륙이나 치열한 공전에 대응하는데, 장시간 초음속 순항에는 사용할 수 없다. 터빈 제트 엔진은 저공 아음속부터 고공 초음속 항공기까지 광범위한 항해에 적합하다. 구소련의 전설적인 전투기 미그 -25 (비호) 는 루리카 설계국의 터보 제트 엔진을 동력으로 사용하여 마하 3.3 의 전투기 속도 기록과 37250 미터의 상승제한 기록을 세웠다. 터보 팬 엔진에 비해 터보 제트 엔진의 연료 경제성은 떨어지지만 고속 성능은 터보 팬 엔진보다 우수합니다. 특히 고공 고속에서는 더욱 그렇습니다.