현재 위치 - 법률 상담 무료 플랫폼 - 회사 전체 - cosh sinh 函数的定义
cosh sinh 函数的定义

双曲函数

基本定义

sinh x =(ex - e-x)/2

cosh x =(ex + e-x)/2

tanh x =sinh x / cosh x

coth x = 1 / tanh x

sech x = 1 / cosh x

csch x = 1 / sinh x

sinh 的名称是双曲正弦或超正弦, cosh 是双曲余弦或超余弦, tanh 是双曲正切、coth 是双曲余切、sech 是双曲正割、csch 是双曲余割。

与三角函数的关系

双曲函数与三角函数有如下的关系:

sin ix = i sinh x

cos ix = cosh x

tan ix = i tanh x

cot ix = -i coth x

sec ix = sech x

csc ix = -i csch x

恒等式

与双曲函数有关的恒等式如下:

cosh2 y - sinh2 y = 1

二倍参数:

sinh 2y = 2 sinh y cosh y

cosh 2y = sinh2 y + cosh2 y

参数的加总:

sinh (x + y) = sinh x cosh y + cosh x sinh y

cosh (x + y) = cosh x cosh y + sinh x sinh y

平方转二倍参数:

sinh2 y = (cosh 2y - 1)/2

cosh2 y = (cosh 2y + 1)/2

命名原因

双曲函数被如此命名大概是因参数曲线 (sinh t, cosh t) 所描絵的是一条双曲线.

另外, 因参数曲线 (sin t, cos t) 描絵一个圆, 故三角函数亦可称为圆函数.

反双曲函数

反双曲函数是双曲函数的反函数. 它们的定义为:

sinh-1 x = ln[x + (x2+1)1/2]

cosh-1 x = -ln[x - (x2+1)1/2]

tanh-1 x = ln[(1+x)/(1-x)]/2 = ln[(1-x2)1/2/(1-x)]

coth-1 x = ln[(x+1)/(x-1)]/2 = ln[(x2-1)1/2/(x-1)]

sech-1 x = ln{x / [1-(1-x2)1/2]}

csch-1 x = ln{[1+(1+x2)1/2] / x}