현재 위치 - 법률 상담 무료 플랫폼 - 회사 전체 - 伟达定理
伟达定理

是韦达定理吧

韦达简介

韦达(Vieta's ,Francois,seigneurdeLa Bigotiere)1540年出生于法国普瓦捷,1603年12月13日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为政府破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。

韦达定理(Vieta's Theorem)的内容

一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中

设两个根为X1和X2

则X1+X2= -b/a

X1*X2=c/a

韦达定理的推广

韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程∑AiX^i=0

它的根记作X1,X2…,Xn

我们有

∑Xi=(-1)^1*A(n-1)/A(n)

∑XiXj=(-1)^2*A(n-2)/A(n)

∏Xi=(-1)^n*A(0)/A(n)

其中∑是求和,∏是求积。

如果一元二次方程

在复数集中的根是,那么

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

由代数基本定理可推得:任何一元 n 次方程

在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:

其中是该方程的个根。两端比较系数即得韦达定理。

韦达定理在方程论中有着广泛的应用。

韦达定理的证明

设x_1,x_2是一元二次方程ax^2+bx+c=0的两个解。

根据求根公式,有

x_1=[-b + -\sqrt (b^2-4ac)]/2a,

所以

x_1+x_2=[-b +(-) \sqrt (b^2-4ac)]/2a+[-b - \sqrt (b^2-4ac)]/2a=-b/a